
Frequency Improvement of
Systolic Array-Based CNNs on FPGAs

Jiaxi Zhang1,∗, Wentai Zhang1, Guojie Luo1,3,†, Xuechao Wei1, Yun Liang1, and Jason Cong2
1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University, Beijing, China

2Computer Science Department, University of California, Los Angeles, CA, USA
3Peng Cheng Laboratory, Shenzhen, China

Email: ∗zhangjiaxi@pku.edu.cn, †gluo@pku.edu.cn

Abstract—FPGAs are commercially available off-the-shelf for imple-
menting convolutional neural network (CNN) accelerators to trade off
accuracy, performance, and power. Systolic array architecture for CNN
accelerators on FPGAs has the potential to run at a high frequency due
to its regular and simple interconnections. However, current FPGA CAD
tools are unable to synthesize and layout systolic arrays in high quality.
In this paper, we identify the reasons for the frequency degradation
of systolic array designs for CNN accelerators. We also propose two
methods to improve the frequency at the front-end and the back-end,
respectively. The experimental results show that our methods are able
to achieve 1.29× higher frequency and attain 1.5TOPS for the VGG16
network on the Xilinx KCU1500 platform.

I. INTRODUCTION

There are emerging computational demands for convolutional
neural networks (CNNs), which are applied for artificial intelligence
in image/video classification, recognition, natural language process-
ing, and autonomous driving. Due to the specific computing and
memory-access patterns of neural networks, customized computing
is a promising approach to achieve high performance and energy
efficiency. And FPGA is a commodity off-the-shelf technology
to implement customized computing and applies to an increased
amount of CNN designs [1], [2], [3], [4], [5], [6].

Throughput is an important performance indicator for FPGA-
based CNN designs. It depends on the amount of operations that a
design can process in a cycle, as in the following equation:

Throughput =
#Operations

#Cycles
× Frequency. (1)

Thus, increasing the frequency helps improving the throughput. In
some early works, researchers exploit the parallelism in computation
to utilize the abundant logic resources on FPGAs. Afterwards,
many works focus on minimizing data movements for the efficient
use of memory bandwidth to achieve high performance. To deter-
mine the optimal performance design from a large design space
with various computation rates and memory access rates, many
works [2], [5], [6], [4] apply the Roofline model and develop
their performance analysis and optimization methods to improve
the overall throughput. On the one hand, most of previous works
aim at increasing the amount of data processed per cycle (the
first term on the right-hand side of Equation 1), but few focus on
frequency improvement [7] (the second term on the right-hand side
of Equation 1). Latte [7] features pipeline transfer controllers in four
common communication and computation patterns to improve the
frequency with a HLS-based implementation. On the other hand,
it has been reported that Intel’s latest FPGA architecture runs at a
frequency of 460-920MHz [8] for some applications, such as the
quantitized matrix multiplication, which reveals the opportunities in
frequency improvement to increase the throughput.

IN

OUT

W

IB IB

OB OB

PE PE

PE PEWB

WB

IN

OUT

W
PE PE

PE PE

PE PE PE PE

PE PE

IB

OB OB

PE0,0 PE0,1

PE1,0 PE1,1WB

WB PE0,2 PE0,3

PE1,2 PE1,3

PE2,0 PE2,1 PE2,2 PE2,3

PE3,0 PE3,1 PE3,2 PE3,3

WB

WB

OB OB

IB IB
DDR

(a) Systolic array Schematic

BUF
BUF

MUX

ACCUMMUL

BUF

IN
(to:PE(x+1,y))

OUT
(from:PE(x+1,y))

W
(to:PE(x,y+1))

OUT
(to:PE(x-1,y)/OB)

IN
(from:PE(x-1,y)/IB)

W
(f
ro
m
:P
E(
x,
y-
1)
/W

B
)

(b) PE Structure

Fig. 1: Systolic array for CNN

Systolic array [9] is a homogeneous network, which has the
potential to run at a high frequency due to its regular and simple
interconnections. Google [10] use it as the core architecture to
implement the large-scale matrix processor in TPU running at
700MHz. This architecture has also been applied to FPGA-based
CNNs [2], [3], [6]. But we observe that the frequency is much
lower than expected when they use the latest FPGA CAD tools.
In other words, systolic array has a layout-friendly topology of its
data processing elements (PEs), but current FPGA CAD tools are
still unable to synthesize and layout systolic arrays in high quality.
Therefore, there is plenty of room for frequency improvement to
attain a high performance.

In this paper, we examine the 2-D systolic architecture and
identify the reasons for frequency degradation. Then we propose
two solutions to improve the frequency of systolic array designs for
FPGA-based CNN accelerators. Our contributions can be summa-
rized as the following:

• We locate the critical paths in the implementation and
analyze the causes in the FPGA CAD tools that prevent a
high-quality systolic array designs for CNN accelerators.
FPGA-based accelerations for CNN models are mostly
DSP-rich, which results in difficulties of strict hardware
resource allocation. Systolic array’s rectangular structure
does not benefit from the popular half perimeter wire
length (HPWL)-oriental CAD tools.

• To increase the design frequency, we propose two tech-
niques at the front-end and back-end of the FPGA CAD
flow, respectively. The experimental evaluations demon-
strate the effectiveness of these two strategies for perfor-
mance optimization.

II. BACKGROUND AND MOTIVATION

A. Background

Systolic array [9] is a highly-parallel and layout-friendly ar-
chitecture due to its simple and regular topology of processing
elements (PEs). This architecture has been applied to FPGA-based
CNNs [3], [6]. Figure 1 (adopted from [6]) shows the 2-D systolic

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

(a) A long DSP chain (b) A distorted layout

Fig. 2: Motivational Examples

array structure and the PE design for CNNs. For each PEx,y , it
receives the input features from PEx−1,y or IB (input buffer) as
well as the weights from PEx,y−1 or WB (weight buffer) and
sums up the partial products by an accumulator. It also shifts the
input features to PEx+1,y and the weights to PEx,y+1. Besides,
it sends the results received from PEx+1,y and the ones computed
by itself to PEx+1,y or OB (output buffer) using a multiplexer.
For detailed information about the computation of the systolic
array cycle by cycle, please refer to [6]. This implementation has
two main advantages to achieve a high performance. On the one
hand, each PE transmits the data horizontally and vertically to its
neighboring PEs, and all the PEs process the data flowing through
them in parallel. This deeply pipelined structure is suitable for
massive parallelism and increases the first term on the right-hand
side of Equation (1). On the other hand, only the boundary PEs
of the array require communicating with memory. This simple
communication structure avoids large fan-out interconnects by using
local connections between adjacent PEs, which decreases the global
data transfers and offers the possibility for a high frequency and
performance.

B. Timing Issues in Systolic Array-based CNN

The simple communication structure of systolic array shows a
great potential to solve timing issues and obtain a high frequency.
However, existing FPGA CAD tools fail to synthesize and layout
this regular structure in good quality, so that the frequency is lower
than expected. For example, we implement a systolic design with
4×4 PEs in Xilinx Vivado 2017.2 with the timing optimization op-
tions as in the Xilinx Vivado Design Suite User Guide UG904, such
as -hold_fix and -fanout_opt. After examining the layout
and the critical paths of this design, we find the implementation has
mainly two issues:

• Long data path caused by the accumulation inside a
PE. Figure 2a shows the schematic and the layout of
one typical critical path of the design. This critical path
consists of four DSPs, and each DSP performs a multiply-
accumulate operation. The cascaded accumulation forms a
long data path and lowers the frequency.

• Distorted layout of the regular systolic array structure.
Figure 2b shows the layout of the systolic array after
placement. Different colors highlight different PEs. And
we draw the topology of the systolic array on top of the
layout. It is obviously that the layout loses the benefits
of the regular structure after placement. The PEs are not

MAC MAC MAC...

Output Queue

a(1),b(1) a(2),b(2) a(I),b(I)

(a) Original DSP chain

MAC MAC ...

MUX
Index

a(1),b(1) a(2),b(2)

Reg ...

... a(I),b(I)

(b) Segmented DSP chain

Fig. 3: Different implementations

(a) Primitive design (b) Segmented design

Fig. 4: Different PE designs of MAC

aligned into an array structure, and the distorted layout
worsens the timing issue.

The detailed reasons of these two timing issues will be discussed
in Section III. And we will also propose several techniques for
frequency optimization.

III. FREQUENCY IMPROVING METHODS

In this section, we present our frequency improvement tech-
niques for systolic array-based neural networks. The front-end
method reduces the length of the DSP chains inside a PE, and the
back-end method imposes extra floorplanning constraints to avoid
the distorted layout across PEs.

A. Front-end method
We first analyze and eliminate the issue for long DSP chains

in Section II-B. A PE has a high demand in the computational re-
sources, such as DSPs. DSP resources are not uniformly distributed
on an FPGA device but are distributed in columns. Therefore,
DSPs in a single PE could be placed across columns or take
place in a single column after placement (see Figure 2b). In the
typical accumulation implementation, DSPs are organized as an
accumulation chain (see Figure 3a). This architecture uses cascaded
DSPs, and has a long combinational data path that prevents a high
frequency.

We propose to reduce the length of the accumulation chain in
high-level designs at the front-end to resolve this problem. The
original DSP accumulation chain computes the following quantity:

Si =

j≤I∑
j=1

ai,j × bi,j , (2)

where I is the length of the accumulation, ai, bi are the i-th input
batch, and Si is the returned result from the output queue. We
transform this equation into:

Si =

I/u∑
j=1

S′i,j =

I/u∑
j=1

 k<j×I/u∑
k=1+(j−1)×I/u

ai,k × bi,k

 , (3)

where we partition the accumulation chain into several parts S′i,j ,
and u is the segment factor. S′i,j represents the summation of the
j-th segmentation of ai × bi. We use I/u cycles to complete the
summation Si =

∑
S′i,j , and every cycle we use MUX to select

(a) Straight line PE (b) Rectangular PE

Fig. 5: Different PE shapes after placement

one segmentation summation to output. The receiver will integrated
the result using all the I/u cycles’ results. The pseudocode is shown
in Figure 4.

This method is applied in the high-level design. High-level
synthesis tools now will synthesize the optimized source codes. Our
segmented design uses additional resources: MUX for selection and
registers for temporary storage. After modification, the data path of
the accumulation chain is divided into I/u segments. In general, to
maximize the throughput, u = 1 would be best choice.

B. Back-end method

The front-end optimization method can solve the long data path
issue caused by the accumulation chain inside a PE, as observed in
Section II-B. However, we still have issue of distorted layout for
the systolic array.

Systolic array is a homogeneous network consisting of many
PEs. It has a layout-friendly structure. But in Figure 2b, we can
see that the design is out of shape after placement with CAD tools’
default options. On the one hand, the convolutional computation
requires a large amount of DSPs, and the DSPs are distributed into
columns over the whole FPGA chip. The heterogeneous resources
affects the placement quality [11]. On the other hand, the total wire
length is an important metric, though not the only one, for FPGA
placers. We count the average number of internal and external nets
of PEs and find out that there are average around 15× more internal
nets than the external ones in systolic array design. We conclude
that the impact of the external nets is much smaller than the internal
ones, and this will result in a distorted layout.

Therefore, we perform floorplanning and set the placement
constraints to solve this problem. Placement constraints restrict PEs
to fixed locations or regions. Figure 5 shows unconstrained PE and
constrained PE. This figure also shows the longest path in the PE,
and we can see that constrained PE will have shorter critical path.

We describe the overall idea below to find a topology-aware
floorplanning for systolic arrays. Given the resource usage of every
PE and their connectivity after logic synthesis, we obtain the shapes
and the relative locations of all the PEs after floorplanning.

First, we find a region for all the PEs to place in, and this region
should provide sufficient hardware resources. In addition, this region
should be as close as possible to the I/O banks that the DDR module
uses. This region’s location can be obtained through enumeration
or greedy search.

Second, we assign PEs based on the DSP columns in the
region, because DSPs are distributed into columns on an FPGA

(a) Floorplanning region (b) Layout with floorplanning

Fig. 6: Back-end improvement with floorplanning

C source code

HLSOpt. C code HDL P&R Bitstream

Frequency
Optimization

Floorplan
Constraint

Fig. 7: Execution Flow

chip. Suppose that the systolic array has C columns of PEs and
the region has C′ DSP columns, the problem becomes how to
allocate C columns of PEs onto C′ DSP columns. We use a
max width variable to restrict maximum PE column’s width. For a
fixed max width, we can assign DSP columns to PEs from left to
right through greedy search. For example, if PE column c occupies
DSP columns from DSP column p to q. We can enumerate the
PE column c + 1’s starting point from DSP column p + 1, and
find the minimum t and DSP columns from p+1 to t have enough
resources for PE columns c+1. In addition, we also need to check if
overlapped columns are resources-sufficient, such as DSP columns
from p to t for PE columns c and c+ 1.

Third, we allocate all the PEs along the row direction. We set
a rule that no PEs can overlap along the row direction. Then, we
only need to enumerate the row starting point for each PE, and use
resource usage to infer each PE’s row ending point.

In summary, back-end method uses floorplanning to restrict the
shapes and the relative locations of the PEs to maintain a regular
array structure and make PE-to-PE nets less critical. In Figure 6, we
demonstrate an example of PE assignment with 4×4 PEs. Figure 6a
shows the floorplanning constraints, and Figure 6b is the placement
result. We can see that floorplanning re-organizes the PEs more
regularly compared to Figure 2b.

IV. EXPERIMENTAL EVALUATIONS

A. Automation Flow

We implement an automated flow to generate FPGA bitstreams
from a high-level design in C, as shown in Figure 7. We also
use (R,C, I) to indicate the structure of PEs. R is the number
of PE rows. C is the number of PE columns. I is the size of the
input vector for a PE, and it also equals to the number of MAC
DSPs. In the frontend, our code wrapper pre-processes the source
codes to transform the original PEs into segmented PEs. After we
explore the best choice of segment factor u in the design space, the
transformed source codes are sent to the FPGA HLS tools. In the
backend, we explore different shapes and locations of the PEs to
minimize their interconnects and maitain a regular floorplan. The
placement constraints generated from our floorplan are sent to the
FPGA physical design tools together with the synthesized design.

TABLE I: Comparison to state-of-the-art implementations (Latency: microsecond, Throughput: GOPS)

Impl. [2] [4] [5] [6] Ours

FPGA Xilinx
VC709

Arria10
GX 1150

Arria10
GX 1150

Arria10
GX 1150

Xilinx
KCU1500

CNN VGG VGG VGG AlexNet VGG VGG AlexNet VGG
Frequency 150MHz 150MHz 385MHz 239.62MHz 221.65MHz 231.85MHz 290MHz 298MHz

Precision fixed
16bit

fixed
8-16bit

fixed
16bit

float
32bit

float
32bit

fixed
8-16bit

fixed
8-16bit

fixed
8-16bit

DSP utilization 2833 (78%) 1518 (100%) 2756 (91%) 1290 (85%) 1340 (88%) 1500 (49%) 1386 (26%) 1368 (25%)
BRAM utilization 1248 (42%) 1900 (70%) 1450 (54%) 2360 (86%) 2455 (90%) 1668 (61%) 1692 (78%) 1634 (76%)

Latency 65.13 47.97 17.18 4.05 54.12 26.85 2.22 21.04
Throughput 354 645.25 1790 360.4 460.5 1171.3 830 1495

TABLE II: Frequency and resource utilization

Configurations Freq. BRAM DSP FF LUT
(11,14,8),baseline 193MHz 78% 26% 23% 38%
(8,19,8),baseline 198MHz 76% 25% 22% 36%
(11,14,8),u = 2 241Mhz 78% 26% 25% 41%
(8,19,8),u = 2 247Mhz 76% 25% 25% 40%
(11,14,8),u = 1 290MHz 78% 26% 26% 43%
(8,19,8),u = 1 298MHz 76% 25% 26% 43%

B. Environment Setup and Experimental Results

In our experiments, we use Xilinx’s FPGA CAD tools, including
Xilinx Vivado 2017.2, Xilinx HLS 2017.2, and Xilinx SDx 2017.2,
all with default optimization options. For higher frequency, we
create microblaze- and DDR4-based projects in Xilinx Vivado, using
IPs generated by Xilinx HLS. We use Xilinx Kintex UltraScale
FPGA KCU1500 Evaluation Kit as the evaluation board. We im-
plement widely-used AlexNet and VGG16 networks. We use 8-bit
fixed data type for weights and 16-bit fixed data type for pixels.

We mainly compare our results with [6] to prove our frequency
optimization’s effectiveness. We maintain the configurations used
in for AlexNet and VGG, which are (R = 11, C = 14, I = 8)
and (R = 8, C = 19, I = 8), to control the variables. We
first implement the un-optimized baseline version on our Xilinx
KCU1500 board and apply our optimization to verify the frequency.
This comparison can show the effect of our optimization directly. In
our implementation, buffer size is determined by the real required
memory bandwidth. The comparison results are listed in Table II.
Frequency is improved by 50% on average, using Xilinx KCU1500
board. We only list the optimization designs with u = 1 because
of sufficient resources. The overall comparison of CNN designs are
demonstrated in Table I.

The overall comparison shows that our optimization improves
the frequency by 28.5% on VGG case, which directly increases
the throughput by 27.6% and reduce the latency by 21.6%. The
latency here means the time need for processing once image. The
design in [5] is implemented by low-level HDL (System Verilog).
This ensures high frequency, but makes it depend on specific CNN
models, and hard to be reused again.

The different of improvement on frequency in Table II and I is
because the implementations are on different FPGA boards. Arria10
is manufactured by Intel using 20nm technology, and KCU1500 is
produced by Xilinx using 20nm technology as well. However, the
DSP units of Arria10 and KCU1500 may have different computa-
tional power.

V. CONCLUSION

In this paper, we analyze the causes in the FPGA CAD tools that
prevent a high-quality systolic array designs for CNN accelerators.
We also analyze how frequency optimization affects the attainable
performance and point out that frequency is still effective for
performance improvement even when a design reaches the memory
bound. We propose two effective techniques at the front-end and
the back-end of the FPGA CAD flow to improve the frequency.
Evaluation results show that our methods can improve the frequency
by 1.29× and attain 1.5TOP/S on the Xilinx KCU1500 platform.

ACKNOWLEDGMENT

This work is partly supported by Beijing Municipal Science
and Technology Program under Grant No. Z181100008918015,
Beijing Natural Science Foundation under Grant No. L172004,
and National Natural Science Foundation of China (NSFC) under
Grant 61520106004.

REFERENCES

[1] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based accelerator design for deep convolutional neural
networks,” in FPGA, 2015.

[2] C. Zhang, Z. Fang, P. Pan, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional
neural networks,” in ICCAD, 2016.

[3] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCL deep learning accelerator on Arria 10,” in FPGA, 2017.

[4] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation
and dataflow in FPGA acceleration of deep convolutional neural
networks,” in FPGA, 2017.

[5] J. Zhang and J. Li, “Improving the performance of OpenCL-based
FPGA accelerator for convolutional neural network,” in FPGA, 2017.

[6] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and
J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on FPGAs,” in DAC, 2017.

[7] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality aware
transformation for high-level synthesis,” in FCCM, 2018.

[8] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G.
Hock, Y. T. Liew, K. Srivatsan, D. Moss, and S. Subhaschandra,
“Can FPGAs beat GPUs in accelerating next-generation deep eural
networks?” in FPGA, 2017.

[9] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” Proc
Sparse Matrix Conf, pp. 256–282, 1978.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, and A. Borchers, “In-datacenter
performance analysis of a tensor processing unit,” in ISCA, 2017.

[11] C. Xu, W. Zhang, and G. Luo, “Analyzing the impact of heterogeneous
blocks on FPGA placement quality,” in FPT, 2014.

