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Abstract—Modern application specific system-on-chip plat-
forms allow customization of caches. Such flexibility enables the
designers to identify the suitable cache configurations through
design space exploration of caches. Trace-driven simulation is
widely used to obtain the cache hits and misses for design space
exploration. However, simulation is normally slow. Meanwhile,
as the embedded system moves toward cache hierarchies with
multi-level caches, such expanded design space leads to extremely
long simulation time. In this paper, we propose a rapid design
space exploration technique for two-level unified caches. Given
the application trace, our technique determines the cache hits
and misses for multiple cache configurations in a single pass.
Our exploration technique adopts a novel LRU linked list data
structure, lookup tables, and search algorithms to effectively
improve the exploration time. Experimental results indicate that
our analysis is 7–239X times faster compared to the fastest known
design space exploration technique, in estimating cache hits and
misses for popular embedded benchmarks.

I. INTRODUCTION

Caches have long been adopted to mitigate the speed dis-
parity between fast processors and slow memories. In general,
for a well-tuned cache hierarchy, most of the memory accesses
can be fetched directly from caches instead of main memory
by exploiting the spatial and temporal localities among the
memory accesses in a program. The accesses to memory incur
longer delay and much more power consumption compared to
the accesses to caches. Hence, cache tuning and optimization
can lead to significant performance gain and energy saving.

Modern application specific platforms allow cache cus-
tomization, in particular cache design parameters. For example,
soft-core processors in the FPGAs [1], [2] and application
specific processors designs [3] allow cache customization at
system design time. Meanwhile, this trend has also been
reflected on the general purpose designs [4], [5], [6]. For ex-
ample, NVIDIA’s state-of-the-art Kepler architecture features
with configurable L1 cache together with scratchpad memories.

The flexible cache architecture is a strength for cache
optimizations, but is also a challenge for the system designers.
The optimal cache configuration is application specific. Thus,
system designers have to explore the entire cache design
space to determine the cache hits/misses numbers for each
cache configuration. The cache design parameters include the
number of cache sets, the cache block/line size, and the degree
of associativity. Hence, even for a single level cache, its
design space consists of a large number of design points.
More importantly, the design space is significantly expanded
for multi-level unified caches due to the cache hierarchy
and interlace of instruction and data caches. For multi-level
unified caches, cache hierarchy and instruction and data caches
can not be explored separately. For example, for a two-level
unified cache, given N1 L1 instruction cache configurations,
N2 L1 data cache configurations, and N3 L2 unified cache

configurations, the design space of two-level unified cache
includes N1 ×N2 ×N3 configurations in total.

The design space exploration of caches is a well studied
problem. The most popular approach to obtain the cache
hits/misses is trace-driven simulation [7], [8], [9], [10], [11].
The simulation based approaches take the memory access
traces as inputs, and then mimic the cache behaviors for some
hypothetical cache configurations, and outputs the cache hits
and misses numbers. The cache hits/misses returned by the
simulation are exact, but simulation could be slow especially
when the design space is large. As an alternative to trace-driven
simulation, analytical approaches have been proposed [12],
[13], [14]. The analytical approaches use mathematical models
to estimate the cache behavior. In theory, analytical approaches
run fast and provide additional performance hints to the
designers. However, they may fail to find the optimal cache
configuration due to the inaccuracy of the models.

In this paper, we present a rapid design space exploration
technique for two-level unified caches. Two-level caches can
be designed to be either inclusive or exclusive. Compared
to inclusive caches, exclusive caches have larger effective
cache storage. Exclusive caches have been utilized in modern
commercial processors including AMD Athlon [15] and ARM
Cortex-A9 processor [16]. Thus, we focus on the exclusive
caches in this work. Recently, Zang and Ross presented the
first simulation framework (U-SpaCS) for two-level unified
exclusive caches [11]. Their technique based on least recently
used (LRU) stack achieves high speedup compared to the non-
optimized trace-driven simulator Dinero [17]. However, there
are two major drawbacks in their work. First, their technique
is inefficient in terms of address lookup as it has to scan the
entire LRU stack. Second, the L2 analysis is inefficient as it
contains a unified L2 stack for all the cache configurations and
compares the same copies of cache blocks multiple times.

Our technique adopts novel LRU linked lists, lookup tables,
and fast search algorithms to improve the simulation time.
More clearly, we use LRU linked list to store the cache
contents for multiple cache configurations and use lookup
tables to compute cache conflicts efficiently. Furthermore,
for efficient L2 cache analysis, we use separate LRU linked
lists for different L1 cache configurations and sort the L2
cache blocks based on their timestamp. This optimization
ensures that one cache block is only compared once. We
show that compared to the state-of-the-art two-level unified
cache simulation U-SpaCS [11], our technique achieves 7–
239X speedup in the design space exploration.

II. ANALYSIS FRAMEWORK

Cache design involves with several parameters: cache line
size (L), number of cache sets (N), associativity (A), and
replacement policy. Then, the cache size is L × N × A. The
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Fig. 1. Analysis Framework.

design space of a cache memory is {C(L,N,A)|Lmin ≤
L ≤ Lmax;Nmin ≤ N ≤ Nmax;Amin ≤ A ≤ Amax; },
where Lmin (Lmax) is the minimal (maximal) line size, Nmin

(Nmax) is the minimal (maximal) number of cache sets,
and Amin (Amax) is the minimal (maximal) associativity,
respectively. We define the design space of L1 instruction
cache, L1 data cache and L2 unified cache as DL1

inst, D
L1
data, and

DL2
unified, respectively. We consider LRU replacement policy.

Under LRU replacement policy, we determine the cache hit
or miss for an access by comparing its cache block conflicts
with the cache associativity. The cache block conflicts of an
access m is the number of cache blocks that are mapped to
same cache set as m but more recently accessed than m.

In this work, we target a two-level unified cache hierarchy
that consists of configurable L1 instruction and data cache
and L2 unified cache. Each cache can vary its cache line
size, number of cache sets, and associativity within its design
space. L1 cache (instruction and data) and L2 cache have to be
explored together due to the interlace of instruction and data
caches through unified L2 cache. Thus, the total number of
cache configurations of the two-level unified cache hierarchy
is |DL1

inst|×|DL1
data|×|DL2

unified|. For exclusive cache hierarchy,
the L2 cache is filled with cache lines that are evicted from
the L1 cache. More clearly, upon a L1 cache miss, the evicted
cache line from L1 cache will be moved to L2 cache; if the
requested cache line can be found in L2 cache, then it will
be moved from L2 cache to L1 cache. Thus, cache lines are
frequently moved between L1 and L2 caches. Using a common
line size for L1 and L2 caches significantly simplifies the data
movement and hardware design [18]. Thus, we consider L1
and L2 caches with the same cache line size. Finally, for a
practical design, L2 cache should be larger than L1 cache.

Figure 1 presents the framework of our simulation frame-
work. Our framework consists of two phases: L1 analysis and
L2 analysis phase, respectively. The inputs to our framework
is the memory address trace. Each address in the trace is

associated with its access type (instruction or data). Depending
on the access type, it either goes to L1 instruction analysis
or L1 data analysis. The output of L1 analysis is the cache
hits/misses for all L1 cache configurations. If the L1 access
incurs a cache miss, then it proceeds to the L2 analysis. The
output of the L2 analysis is the cache hits/misses for all L2
cache configurations.

For each level of cache, we use a group of LRU linked lists
to store the cache contents for multiple cache configurations.
We also use lookup tables to speedup the search of cache
conflicts. For L1 cache analysis, the instruction and data can be
separated. However, this is not the case for L2 cache analysis
as instruction and data are stored together. For L2 analysis, we
first compute the number of cache block conflicts from one
type of access (either instruction or data), and then use the
timestamp of current access (order in the trace) to determine
the number of cache block conflicts from the other type of
access. Finally, we sum the cache block conflicts together and
determine the cache behavior.

III. DATA STRUCTURES

To speedup the design space exploration, it is critical to
design efficient data structures for data storage. LRU stack is
used in [11]. However, for cache configurations with different
cache sets, multiple LRU stacks are required [11]. This wastes
storage and exploration time. Thus, we propose to use LRU
linked list. The nodes in the linked list store not only the
cache blocks but a few pointers that link them with the other
nodes as shown in Figure 2. The cache blocks that appear in
multiple cache configurations with different cache sets are only
stored once. Through pointers, we can find the cache contents
for multiple cache configurations with different cache sets.
Thus, LRU linked list is a compact and efficient data structure
compared to LRU stack. For L1 and L2 caches, we use a
group of linked lists as shown in Figure 1. More concretely,
for L1 cache, we use one group for instruction and data cache
separately. L2 analysis depends on the results of L1 analysis.
So, for L2 cache contents, we create one group of linked list
for each L1 cache configuration. For each level of cache, the
number of LRU linked list in the group is determined by
the minimum number of cache set in the design space. For
example, let us assume the minimum number of cache sets of
L1 instruction cache is NL1 inst

min . Then, the group for L1 cache
contains NL1 inst

min LRU linked lists. Given a cache block m, it
is mapped to the linked list based on its index (m%NL1 inst

min ).
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Fig. 2. LRU linked list.

Every node in the linked list is associated with a timestamp
(order in the trace). We order the nodes in the linked list based
on the LRU replacement policy. The leftmost (rightmost) node
is the most (least) recently accessed node. More clearly, given
a cache block access, if it can be found in the linked list
(accessed before), then it will be moved to the head (leftmost)
of the linked list; otherwise, a new node will be created and
inserted to the head of the linked list.

A linked list stores the cache contents for multiple cache
configurations with varying number of cache sets and asso-
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ciativity. Cache configurations with different block sizes are
stored separately. For each linked list, we use an array of
pointers to link the nodes together for different number of
cache sets. For each node, pointers prev[i] and next[i] point
to the previous and next node for 2i number of cache sets,
respectively. If the pointer prev[] (next[]) is null, then it means
the current node is the first (last) node. Figure 2 shows an
example of prev and next pointers. To determine the cache
behavior (hit or miss), we need to count the conflicting cache
blocks that are more recently accessed than the current one.
If the conflicts is less than the cache associativity, then it is a
cache hit; otherwise, it is a cache miss. To speedup the search
for conflicts, we define lookup tables evict[][][]. evict[i][j][k]
points to the 2kth node in the cache set j for the cache with 2i

number of cache sets. Through evict[][][] table, we can easily
compute the cache block conflicts for different associativity,
and then compare their timestamp with the current node to
determine its cache behavior. Finally, we define insert, shift
and remove operations to maintain the prev[], next[], and
evict[][][] data structures. Let us use insert operation as an
example. Insert operation inserts a new node into the linked
list. It first locates the head of the related linked list and then
links it with the previous head of the linked list. All the nodes
in the linked list are pushed backward by the insert operation.
Thus, we have to update the evict[][][] table. For example, we
need to update the evict[i][j][k] to its previous node. This is
assisted by using the prev[] pointer. Similarly, we maintain the
data structures for shift and remove operations.

IV. DESIGN SPACE EXPLORATION

In this section, we will detail our L1 and L2 analysis algo-
rithm. Given an address, it starts with L1 analysis and proceeds
to L2 analysis if it incurs a L1 cache miss (Figure 1). In the
following, we assume the access address is an instruction. The
processes of instruction and data access are similar.

A. L1 analysis algorithm

Given an address, L1 analysis returns the cache hit or miss
for all the cache configurations. If the current address is not
accessed before, then it guarantees a cache miss for all the
L1 and L2 cache configurations. For this case, we create a
new node and insert it to the head of the linked list. If the
current address is accessed before, then we determine its cache
behavior using evict[][][] table. We enumerate different cache
configurations and obtain the timestamp using evict[][][] table
and then compare it with the timestamp of the current address.
If the timestamp of current address is smaller, then it is a cache
miss; otherwise, it is a cache hit.

B. L2 analysis algorithm

For each possible cache set number in L2 cache, L2
analysis involves four steps: (1) computing the cache block
conflicts from instruction accesses (Algorithm 1) (2) sorting
(3) computing the cache block conflicts from data accesses
(Algorithm 2) (4) computing the total cache block conflicts
and determine cache hit or miss. For L2 unified cache, it stores
both instruction and data accesses. Thus, we have to consider
the cache block conflicts from both of them. In the first step,
we compute the conflicts from instruction accesses and record
the timestamp of current access for every L1 instruction cache

miss configuration. Then, we sort the L1 instruction cache miss
configurations in descending order based on their timestamp.
In the third step, we count the cache block conflicts from the
data accesses. Finally, we can determine the cache behavior by
comparing the cache associativity with the sum of cache block
conflicts from both instruction and data accesses. The LRU
Linked list are maintained in LRU order. Thus, after sorting,
we can walk through the linked list for the data accesses and
collect the cache block conflicts in one scan. The sorting step
reduces the complexity from O(n2) to O(n).

Algorithm 1 Compute cache conflicts from instruction ac-
cesses

N is the number of sets in L2;
i = log2N ;
for each L1 inst cache miss config Ci do

Let x be the current node in the linked list;
timestamp[Ci] = x.insert time;
conf i[Ci] = 0;
tmp = x.prev[i];
while tmp 6= Null do

conf i[Ci] = conf i[Ci] + 1;
tmp = tmp.prev[i];
if conf i[Ci] >= Max Associativity then

break;
end if

end while
remove x;

end for

Algorithm 1 describes the details of the computation of
cache block conflicts from instruction accesses. In this step,
we output two arrays for all L1 instruction cache miss con-
figurations. conf i array records the number of instruction
cache block conflicts for different L1 instruction cache config-
urations. timestamp array records L2 timestamp for different
L1 instruction cache configurations. For each L1 instruction
cache miss configuration Ci, we find the current access x
in the corresponding L2 linked list group. Then, we record
the timestamp of this configuration and compute the cache
conflicts by traversing from x to the head.

Algorithm 2 Compute cache conflicts from data accesses
i = log2N ;
Let idx be the index of cache set;
for each L1 data cache config Cd do

conf d = 0;
tmp = evict[i][idx][0]; / ∗ TheHeadOfList ∗ /
for each L1 inst cache miss config Ci do

while tmp.insert time > timestamp[Ci] do
conf d = conf d+ 1;
tmp = tmp.next[i];
if conf d >= Max Associativity then

break;
end if

end while
end for

end for

Algorithm 2 describes the details of the computation of
cache block conflicts from data accesses. Let conf d be
the number of data accesses conflicts. We first enumerate
L1 data cache configurations. For each L1 instruction cache
miss configuration, we determine conf d by comparing the
timestamp of the nodes in the current linked list with the
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timestamp of the instruction cache configuration. Since all
timestamps of the nodes in the list are in descending order, we
can compute conf d for each timestamp by scanning the list
only once. Starting from the head node of the list, we increase
conf d by one after every hop. We continue this until we
reach a node which has smaller timestamp and compute the
total conflicts.

V. EXPERIMENTS

We evaluate our framework by comparing with the state-
of-the-art two-level unified cache simulation technique U-
SpaCS [11]. Both our framework and U-SpaCS target two-
level unified exclusive caches and both can simulate multiple
cache configurations in a single pass. All the experiments are
performed on a Intel Xeon 2.40GHz CPU with 16GB memory.

We try a set of embedded applications from MiBench
benchmark suite [19] and larger general-purpose applications
from SPEC2000. The address traces of these benchmarks
are generated using SimpleScalar [20]. For some SPEC2000
benchmarks, the address trace could be extremely large. For
those cases, we use a fraction of the trace (the first 50M
references) for evaluation. For our design space, we vary the
block size of the cache hierarchy from 8 to 64 bytes. For L1
instruction and data cache, we vary the number of cache sets
from 4 to 64 and associativity from 1 to 8; for L2 unified
cache, we vary the number of cache sets from 4 to 256 and
associativity from 1 to 16. So, the L1 cache size is up to 64K
and the L2 cache size is up to 256K. Finally, for a realistic
cache design, the L2 cache should be larger than the L1 cache.
Given this constraint, there are totally 32,200 two-level unified
cache configurations in our design space.

TABLE I. RUNTIME COMPARISON OF U-SPACS AND OUR ANALYSIS.

Benchmark Our (sec) U-SPaCS (sec) Speedup
basicmath 139,912 1,582,995 11.31
crc32 10,523 73,938 7.03
dijkstra 25,517 699,355 27.41
fft 80,582 2,857,595 35.46
ispell 18,268 222,168 12.16
jpeg 24,081 889,832 36.95
patricia 151,631 5,830,628 38.45
qsort 146,151 3,941,893 26.97
rijndael 64,320 629,678 9.79
sha 7,110 166,105 23.36
stringsearch 3,617 61,439 16.99
susan 55,300 13,224,244 239.14
bzip2 32,333 6,844,510 211.69
gzip 42,985 5,847,761 136.04
swim 33,641 1,270,129 37.76
average 55,731.4 2,942,818 52.8

We first compare the cache hits/misses of our technique
and U-SpaCS for both L1 and L2 caches. The cache statistics
are exactly the same. We also verify the numbers with the
functional cache simulator sim-cache in Simplescalar.

The simulation time are shown in Table I. Our framework
is significantly faster (7 - 239X speedup) compared to U-
SpaCS. On average, our technique is about 53X faster than U-
SpaCS. We also notice that the speedup varies across different
applications. In fact, the achieved speedup depends on the
number of unique cache blocks. In U-SpaCS simulation, its
efficiency depends on the LRU stack size (the number of
unique cache blocks). Given an application with large working
set, U-SpaCS implementation wastes significant time in LRU

stack scan and redundant cache block comparison. In contrast,
our technique leverages the linked list with pointers and avoids
redundant comparison. For example, for the larger benchmarks
such as bzip2 and susan, which contain a large number of
cache blocks, the speedup of our technique is above 200X.

VI. CONCLUSION

In this paper, we develop a rapid design space exploration
technique for two-level unified caches. Our technique adopts
a novel LRU linked list data structure, lookup tables, and
search algorithms to effectively improve the exploration time.
Experimental results indicate that our analysis is up to 239X
times faster (average 53X) compared to the fastest known
cache design space exploration technique.
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