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ABSTRACT

There are two prominent problems with technology scaling:
increasing design complexity and more challenges with in-
terconnect design, including routability. High-level synthesis
has been proposed to solve the complexity problem by rais-
ing the abstraction level. In this paper, we share our vision
that high-level synthesis can potentially help the routability
problem as well. We show that many interconnect problems
that occur in layout can be avoided or mitigated by adopt-
ing a layout-friendly RTL architecture generated from high-
level synthesis. We also evaluate some structural metrics
that can be used to estimate the routability impact of de-
sign decisions in high-level synthesis. Experimental results
have demonstrated correlations between the metrics and the
routability of the resulting design.

Categories and Subject Descriptors

B.6.3 [Logic Design|: Design Aids—automatic synthesis,
optimization; G.3 [Mathematics of Computing]|: Proba-
bility and Statistics—correlation and regression analysis

General Terms

Design, Experimentation

Keywords
High-Level Synthesis, Routability, Interconnect Estimation

1. INTRODUCTION

Technology scaling has led to the increasing difficulty in
resolving interconnect problems. This is due to relatively
scarce routing resources and large interconnect delays. Var-
ious efforts to solve these problems have reshaped almost
every aspect of the IC industry in the past twenty years.
Advanced process technologies have offered new materials
and more metal layers. 3-D integration provides a further
opportunity to reduce the length of interconnects. In the
EDA community, early work mainly focused on congestion
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optimization during placement and routing [8,26,28,30]. As
interconnect problems become worse, it is insufficient to re-
pair routability failures only during physical design. With
the prevalence of RTL-based design flows, early interconnect
estimation and optimization techniques during logic synthe-
sis have been proposed, [24,25,27,31]. On the designer side,
optimization of global interconnects is the central task of
design planning and architecture definition. New design
methodologies and styles have been established to address
interconnect challenges [6,9,11, 33].

Along with technology scaling, another trend is the rapid
increase of complexity in system-on-chip designs. This has
encouraged the design community to seek better produc-
tivity. Electronic system-level design automation has been
widely identified as the next productivity boost for the semi-
conductor industry, where high-level synthesis (HLS) plays
a central role, by enabling the automatic synthesis of high-
level, untimed or partially timed specifications (in languages
such as C/C++, SystemC, Matlab) to cycle-accurate RTL
models. These RTL models can then be accepted by the
downstream RTL synthesis flow for implementation.

HLS has been an active research topic for more than 30
years. Early attempts to deploy HLS tools began when RTL-
based flows were well adopted. In 1995, Synopsys announced
Behavioral Compiler, which accepts behavioral HDL code
and connects to downstream flows. Similar tools include
Monet from Mentor Graphics and Visual Architect from
Cadence. This wave of tools received wide attention, but
failed to widely replace RTL design. This is partly as-
cribed to the use of behavioral HDLs, which are not popular
among algorithm and system designers and require steep
learning curves. Since 2000, a new generation of HLS tools
has been developed in both academia and industry. Unlike
their predecessors, many of them use C-based languages for
design capture. This makes them more accessible to algo-
rithm and system designers. It also enables hardware and
software to be specified in the same language, facilitating
software/hardware co-design and co-verification. The use
of C-based languages also makes it easy to leverage new
techniques in software compilers for parallelization and op-
timization. As of 2012, notable commercial C-based tools
include Cadence C-to-Silicon Compiler, Calypto Catapult C
(formerly a product of Mentor Graphics), NEC CyberWork-
Bench, Synopsys Synphony C (formerly a product of Syn-
fora, and originating from the HP PICO project), and Xilinx
AutoESL (originating from the UCLA xPilot project [10]).
More detailed surveys on the history and progress of HLS
are available from [15,21].

In our experimental HLS system based on xPilot, com-



piler transformations are first performed on the behavioral
specification to obtain an optimized intermediate code rep-
resented as a control-data flow graph (CDFG). Operation
scheduling then assigns operations in the CDFG to control
states. The result of scheduling is a finite-state machine with
datapath (FSMD), on which binding is applied to allocate
resources in the datapath. After that, an RTL netlist can
be generated. The basic flow is illustrated in Figure 1.

Behavioral Specification
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RTL
Figure 1: A typical high-level synthesis flow.

Numerous academic research and industry practices have
demonstrated the gain in performance, area, and power of
implementations obtained by improving the HLS algorithm,
or by exploring different options/directives in HLS. This is
primarily because decisions at a higher abstraction level of-
ten have bigger influences. Thus, we believe that huge op-
portunity for interconnect optimization exists in HLS. In-
stead of expanding time and effort to fix problems and mak-
ing various compromises for a given netlist, the designer
could use a HLS tool to generate a layout-friendly RTL
netlist, which is easier for downstream tools to implement.

In this paper we show the impact of HLS on routability in
Section 2. We then describe some structural metrics that can
be used in the synthesis engine (i.e., scheduling and binding)
in Section 3 and experimentally evaluate their effectiveness
in Section 4. Discussions on future directions are presented
in Section 5.

2. IMPACT OF HIGH-LEVEL SYNTHESIS

In this section we experimentally study the impact of high-
level synthesis on routability. Our study is based on the
xPilot HLS tool [10]. Separate studies are performed for the
synthesis engine and for compiler transformations.

2.1 Routability Evaluation Flow

In order to evaluate routability, we feed the RTL netlist
under evaluation into an implementation flow, which in-
cludes the stages of (i) RTL elaboration, (ii) logic synthesis,
(iii) placement, and (iv) routing.

For a given netlist, its routability mainly depends on the
amount of routing resources on the target platform. Gener-
ally, the target platform is either ASIC-style or FPGA-style.
The routing resources of an ASIC-style platform are deter-
mined by the number of metal layers and the wire pitches.
The routing resources of an FPGA-style platform, assuming
the architecture model in [4], are determined by the number
of tracks between the configurable logic blocks (CLBs).
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In this paper we mainly focus on an FPGA-style routabil-
ity evaluation flow, illustrated in Figure 2. We use Altera
Quartus II version 9.1 [1] as an RTL frontend, and then use
ABC version 70731 [2] to synthesize and map the netlist
into 4-input lookup tables (4-LUTs). The mapped netlist is
packed into CLBs by T-VPACK 5.0.2 [3], where each CLB
contains ten 4-LUTs and ten flip-flops. We adopt a simpli-
fied routing architecture from [4]. The CLBs form a reg-
ular array: the space between two neighboring CLB rows
or columns is called a channel, and the space between two
neighboring CLBs is called a segment. There are multiple
routing tracks in the segments, where we assume the span
of a track is one CLB, and the number of tracks (channel
width) can be different for different segments. The packed
netlist is then placed by VPR 5.0.2 [3] with the total bounding-
box wire length as the objective. Routing is also done by
VPR, which minimizes the maximum channel width using a
binary search.

It is obvious that a design will not be routable if the chan-
nel width is too small. Thus we consider maximum chan-
nel width (CW_max) and average channel width (CW_avg)
as indicators for routability. In addition, total wire length
(WL_tot) and average wire length (WL_avg) are also used
in the evaluation.

RTL

¥
Elaboration
by Quartus
Logic Synthesis
by ABC
Pack & Place
by VPACK+VPR

Routing
by VPR

Figure 2: The RTL implementation flow.

2.2 Impact of the Synthesis Engine

To demonstrate how decisions in the synthesis engine im-
pact routability, we generate multiple RTL models from the
same CDFG by varying strategies in scheduling and bind-
ing. For scheduling, we adjust the optimization objective
as well as resource constraints to obtain different FSMDs.
The strategies in scheduling are listed in Table 1. Simi-
larly, different objectives and constraints listed in Table 2
are specified for binding to generate different RTL netlists.

By combining each strategy for scheduling with each strat-
egy in binding, we can obtain 60 different strategies in the
synthesis engine. In practice, different strategies can some-
times lead to equivalent or identical RTL netlists. We ex-
tract several computation-intensive kernels as test cases from
DSP applications. These cases generally perform many mul-
tiplications and addition/subtractions. For each test case,
we measure the routability for all RTL models generated us-
ing different synthesis strategies, and report the minimum
and maximum values for each metric in Table 3. The results
indicate that different RTL models generated from the same
CDFG can have drastically different routability.



Table 1: Scheduling strategies.

objective  constraint

1 ASAP None

2 ALAP None

3 MINREG None

4 ALAP M = [0.25 x m]

5 ALAP M =10.25xm], A=[0.4x a]
6

MINREG M = [0.1 x m], A= [0.2 x a]

The ASAP/ALAP objective tries to schedule operations
as soon/late as possible, subject to optional resource con-
straints [17]; the MINREG objective tries to minimize the
total lifetime of variables in order to reduce registers. M
and A are the number of available multipliers and adders in
the resource constraints, respectively; m and a are the num-
ber of multiplication and addition operations in the CDFG,
respectively.

Table 2: Binding strategies.

objective constraint
1  total area None
2 total area muz_input < 4
3 register muz_input < 4
4 multiplier None
5  multiplier muzx_input < 4
6  multiplier and register None
7  multiplier and register muzx_input < 4
8  multiplier and adder None
9  multiplier and adder muz_input < 4
10 multiplier and adder and register mux_input < 4

Multiplier /adder /register in the objective means minimizing
the number of corresponding components. mux_input is the
maximum number of inputs for each multiplexer; here we
try to avoid large multiplexers by setting an upper bound
on muz_input.

2.3 Impact of Compiler Transformations

In fact, before CDFG is generated for scheduling and bind-
ing, the compiler front-end often applies a sequence of trans-
formations on the intermediate representation. Some of the
transformations are the same as ones found in conventional
compilers, like dead code elimination; yet others are specif-
ically designed for HLS. The performance implications of
many transformations are well understood. Here we make
a few observations about their impact on routability in the
context of HLS.

We note that the following scalar transformations tend to
reduce interconnect complexity.

e Expression simplification. For example, constant prop-
agation and strength reduction can replace complex
functional units with simpler ones.

e Expression structure optimization. For example, com-
mon sub-expression extraction, redundancy elimina-
tion and re-association can reduce the number of com-
plex functional units and change the local structure of
the datapath.

e Bitwidth optimization. Reducing the bitwidths of operands

and results can reduce component sizes and the num-

Table 3: Routability measurements.
design CW_max CW_avg WL_tot WL_avg

testl ~ 46/86 30/44  36K/166K  9/12
test2  60/98 38/47  61K/251K  11/13
test3  40/70 25/33  25K/103K  7/9

testd  52/86 31/40  47K/196K  10/12
testb  62/122  39/55  94K/562K  12/17

a/b indicates that a is the minimum value and b is the max-
imum value, among all results generated for the test case.

ber of wires. This optimization is particularly useful
for HLS.

The following transformations often have more global in-
fluences.

e Transformations that change memory organization. In
the implementation of xPilot, each array is mapped to
a dedicated memory block. Transformations like ar-
ray partitioning, array mapping, array reshaping can
change the number of memory blocks, the number of
ports on each memory block, as well as the way mem-
ory blocks connect to other components. For example,
partitioning an array can increase throughput, but it
often leads to more decoding/multiplexing logic and
more interconnects [13].

e Loop transformations. Unrolling a loop creates oppor-
tunities for code optimization and parallelization; yet
it often destroys the regular structure of the data trans-
fers between different loop iterations and thus leads to
more components and interconnects.

e Function-level transformations. In xPilot, each func-
tion is implemented as a hardware module. When a
function is inlined, further optimization may be per-
formed at call sites; on the other hand, when the func-
tion calls are optimized differently at different call sites,
it becomes difficult for them to share the same set of
components and interconnects.

Here we perform a case study on a simple design that mul-
tiplies two 88 32-bit integer matrices. The matrix multi-
plication is implemented straightforwardly as a three-level
nested loop: the inner loop computes an element in the re-
sulting matrix, the middle loop computes a row, and the
outer loop computes the entire result. We generate three
solutions.

e Solution 1: no loop unrolling.

e Solution 2: unroll the inner loop completely, and par-
tition the two input matrices into row/column vectors.

e Solution 3: unroll the middle loop and the inner loop
completely, partition the two input matrices completely
(into scalars), and partition the output matrix into col-
umn vectors.

The three solutions are synthesized using default synthe-
sis options and the resulting routability result is reported
in Table 4. It is evident from the result that unrolling
increases interconnect complexity drastically for this case.
Note that a solution with higher interconnect complexity
also has higher performance; thus a tradeoff between perfor-
mance and routability needs to be considered when making
decisions on loop unrolling.



Table 4: Routability for matrix multiplication.

solution CW_max CW_avg WL_tot WL_avg
1 30 18 4543 5
2 44 24 43610 7
3 80 36 223042 10

3. ROUTABILITY ESTIMATION

A frequent problem of optimizing at a higher level is the
lack of good estimators: while there are many alternative
RTL structures to explore in HLS, it is hard to decide whether
one is superior to another. This is particularly true for in-
terconnect optimization, because unlike other metrics (such
as latency, throughput, area) which can be estimated to a
reasonable accuracy for a given RTL model, the length and
density of interconnects can hardly be decided without a
layout. While different downstream tools can generate dif-
ferent layouts, the global structure of the block-level netlist
plays an important role in deciding what a good layout looks
like. The first step toward layout-friendly high-level synthe-
sis is to be able to evaluate the layout-friendliness of an RTL
netlist. The trivial approach of running through all down-
stream steps would give the most accurate result; yet it is
often impractical when exploring a large number of alterna-
tives. Most of the existing ways to predict routability fall in
one of the following categories.

(1) Incorporate a rough layout in high-level synthesis.
There are numerous efforts that combine high-level synthe-
sis with floorplanning to help interconnect estimation and
optimization [18,20,37,39,40]. This is quite a reasonable
approach. However, since layout itself is a nontrivial prob-
lem, implementation of a stable and fast layout engine itself
is a challenge.

(2) Use structural metrics to evaluate interconnect com-
plexity. Such metrics are usually derived from a graph rep-
resentation of the netlist without performing layout. Widely
used structural metrics include the total multiplexer inputs
[7,22,23,29], the number of global interconnects [12,32], the
total cut size [24], etc. These metrics are often easier to ob-
tain and are more stable (i.e., not dependent on the layout
algorithm), but their accuracy is often a concern.

Given a scheduling/binding solution on a CDFG, the RTL
netlist can be constructed. The netlist often consists of
components (including functional units, registers, memo-
ries, multiplexers, pre-synthesized blocks, etc.) and wires
which connect components through ports. A directed graph
G = (V,FE) can be constructed to represent the netlist,
where V' = {1,2,...,n} is the set of vertices each repre-
senting a component; and £ C V x V is the set of directed
edges each representing a net from the source component to
the sink component. Note that an edge is present only when
there are data transfers between the two components; if two
components are connected in the netlist only because they
are both sinks of a net, no edge is be created between the
corresponding vertex pair.

The following metrics are considered in our evaluation.

e Total number of datapath nets (#nets).
e Total number of multiplexer inputs (#mux_input).

e The average cut size between components in the netlist
(AMC). Here the bitwidth of each net is considered.
More details are available in Section 3.1.
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e The spreading score proposed in [14]. More details are
available in Section 3.2.

3.1 A Metric Based on Cut Size

Cut size has been recognized as an indicator of intercon-
nect complexity in a number of important synthesis steps,
such as partitioning, clustering, and placement. Intuitively,
smaller cut size implies less global connections, and thus
better routability.

The cut-size minimization process is explicitly applied in
every partitioning-based placer (e.g., Capo [34]). In fact, if
we divide the placement region into unit squares, the total
cut size of a placed netlist on the edges of these squares is
approximately equal to the total wire length. Thus, the re-
cursive cut-size minimization process in partitioning-based
placers can be viewed as an approximate wire length mini-
mization process. Moreover, the cut size across a local cut
line directly captures the local congestion, and maintains
better congestion information than the total wire length
metric [35].

Kudva, Sullivan and Dougherty propose the sum of all-
pairs min-cut (SAPMC) to evaluate the adhesion of a gate-
level netlist, and use it in logic synthesis [24]. In a netlist
represented by graph G = (V, E), the cut size of the an s-t
min-cut between two distinct vertices s and ¢ is the minimum
number of nets whose removal disconnects s and ¢. The
SAPMC is the sum of min-cut sizes for all pairs of distinct
vertices in V. Experimental results reported in [24] show
a positive correlation between congestion and SAPMC; in
addition, the results indicate that the correlation between
congestion and the circuit size (as measured by the number
of nodes in the netlist) is even stronger, and thus SAPMC is
only used to break ties in optimization. Clearly, SAPMC is
also positively correlated with the circuit size, because larger
circuits naturally have more distinct node pairs, which lead
to larger SAPMC. In an effort to obtain orthogonal metrics,
we try to exclude the node count factor from SAPMC, and
instead compute the average min-cut (AMC), by dividing
SAPMC with n(n — 1)/2, where n is the number of nodes.

3.2 A Metric Based on Graph Embedding

This section describes spreading score, a structural metric
proposed in [14]. The metric is based on graph embedding,
and can be computed efficiently using convex programming.
Here we give a brief review, more details about the metric
can be find in [14].

A layout of the netlist can be regarded as an embedding of
G in the 2-dimensional Euclidean space R%. We associated
each vertex ¢ with a column vector p; = (z;, yi)T to represent
its position in the embedding. The length of the connection
(i,§) € E can be measured as the distance in R?, i.e., ||p; —
pill = /(@i — ;)% + (i — y;)2.

We consider the following optimization problem.

maximize Y., w;||p; ||2
subject to > wip; =0
lpi — pill <l

(1)
V(i,7) € E

Here w = (w1, wa, ..., wn)T is the non-negative weight vec-
tor with w; being the area of component ¢; [;; is the max-
imum allowed length for the wire connecting i and j. The
objective function measures how far components are spread
from their weighted center of gravity, using a weighted 2-
norm of the distance vector. Thus the problem in Equation



1 is to maximize component spreading, under the constraint
that the length every connection (7, j) € E does not exceed
lij.

With proper selection of l;;, we expect that the optimal
value of the problem in Equation 1 can be used to evalu-
ate the layout-friendliness of a netlist. This is based on the
following observation: if components in a netlist can spread
over the chip region without introducing long wires, it will be
easy to remove overlaps between components and obtain a
layout with small wire length, and thus less congestion. This
can be empirically verified using popular hand-designed in-
terconnect topologies. For example, mesh and ring can all
spread apart without long interconnects, and they are re-
garded as scalable layout-friendly topologies; on the other
hand, spreading the full crossbar or hypercube on the 2D
plane inevitably introduces long interconnects, and these
topologies are generally much more expensive in intercon-
nect cost. In our experiments, we set the distance l;; based
on estimated sizes of components as l;; = /w; + N

It is difficult to solve the problem in Equation 1 directly,
because maximizing a convex function is generally NP-hard
(note that minimizing a convex function is easy). We hereby
propose a tractable relaxation.

Consider the graph G with n vertices. We use a 2 X n
matrix P = (p1,p2,...,Pn) to represent its embedding in

R2, ie.,
p= (" *2 o A (2)
Y1 Y2 o Un
Let Q = PTP. Then Q is a symmetric semidefinite matrix
with a rank of at most 2, and

T
Qij = pi pj = Tixj + Yiyj- (3)
We can use ) as variables in the formulation in Equation
1 without losing any useful information, because p can be
reconstructed from @) with Cholesky decomposition.

Using Equation 3, we can rewrite the objective and con-
straint functions in Equation 1 as follows.

Sy willpil? = S, wiQu = (diag(w), Q) (4)
[y wipi||* = S0, Y wiw; Qi = (ww”, Q) (5)
Ipe = pilI* = Qu+ Qi =205, = (KV,Q)  (6)

Here diag(w) is the n x n diagonal matrix with w on its
diagonal. e; is the ith standard basis vector in R™ and
K4 = (ei —e5)(e; — ej)T. (X,Y) is the Frobenius inner
product of matrices X and Y, i.e.,

(X,Y) = ¥, %, XYy = u(X7Y) = e(YTX). (1)

Then we can rewrite the problem in Equation 1 to use @
as variables, and relax the rank constraint on Q.

maximize (diag(w), Q)

subject to <wa, Q> =0 ®)
(KY,QY< 8 V.j) € B
Q=0

This problem is convex. In fact, it is a semidefinite pro-
gramming (SDP) problem. Like linear programs, SDP prob-
lems can be solved optimally in polynomial time, and effi-
cient solvers have been developed in recent years. We will
not discuss background on convex programming and SDP
here. Interested readers may refer to books and survey pa-
pers on these topics [5, 38].

The problem in Equation 8 essentially asks for an embed-
ding in R™ instead of R?, and thus its optimal value is the
lower bound of the problem in Equation 1. In our imple-
mentation, we adopt this approximation and divide it by n?
to normalize it. The result is referred to as spreading score.
The expectation is that a larger spreading score implies a
more layout-friendly datapath structure.

4. RESULT AND ANALYSIS

Results on the test cases in Table 3 are collected. We
extract the pre-layout metrics described in Section 3 after
HLS, and try to correlate them with post-layout routability
data described in Section 2.1.

Single-variable linear regressions between the pre-layout
characteristics and maximum channel width are illustrated
in Figure 3. From the results, we can see that spreading
score has a strong positive correlation with CW_max for
several cases (e.g., testl), but shows a weak correlation on
test2; #net shows strong positive correlations with CW_max
as well; however, total number of multiplexer inputs per-
forms poorly. Surprisingly, AMC tends to have a negative
correlation with CW_max, i.e., larger average cut-size leads
to smaller channel width. This seems to indicate that AMC
is not a primal factor in deciding congestion in the context
of HLS. Similar single-variable regressions can be performed
for other post-layout metrics. Figure 4 illustrates the results
for average wire length. It can be observed that spreading
score has a consistently negative correlation with WL_avg,
although the correlation is weak for test4 and test5; other
metrics seem weaker.

To examine the usability of these metrics, we perform a
two-variable polynomial regression with spreading score and
AMC as independent variables, and CW_max as the depen-
dent variable. We randomly select 70% of the data to fit
a linear and a quadratic function, respectively, and then
use the fitted function to “predict” the CW_max for the re-
maining 30% of cases. The random selections are performed
ten times and we collect the average absolute error and the
relative error for all the designs, as listed in Table 5. In
addition, we obtain regressions for CW_max with spreading
score, AMC and #net as independent variables in Table 7,
and we obtain regressions for WL_avg with spreading score
and AMC as independent variables in Table 6.

On average, the relative error of CW_max fitted with a
linear function is less than 10%, while increasing the order of
the fitting function would not help to increase the accuracy.
For test2, increasing the order even produces a much less
accurate fitted function. The data in Table 7 suggest that
including more vaiables in the regression slightly reduces the
error when we use a linear or a quadratic function.

Table 5: Errors of the polynomial regression for
CW_max using spreading score and AMC.

design linear quadratic
error % | error %

testl 3.3 5% 76  11%
test2 5.8 8% | 10.1 16%
test3 3.3 7% 4.3 9%
test4 4.4 7% 4.6 7%
testh 7.0 11% | 5.7 9%
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Figure 3: Linear regression of maximum channel width on four high-level metrics.

Table 6: Errors of the polynomial regression for
WL_avg using spreading score and AMC.

design linear quadratic
error % | error %

testl 0.35 3% | 0.41 4%
test2 0.27 2% | 0.22 2%
testd | 0.23 3% | 0.56 7%
testd | 043 4% | 0.34 3%
testb | 0.61 4% | 1.1 ™%

5. CONCLUDING REMARKS AND FUTURE

DIRECTIONS

In this paper, we have demonstrated and quantified the
opportunities for interconnect optimization in high-level syn-
thesis, and evaluated several metrics in predicting wire length
and congestion. This is a preliminary study. We see several
directions for fruitful future research.

1. Although some metrics evaluated in this paper, such
as spreading score and net number, show reasonably good
correlations to results after layout on some designs, none of
them can consistently predict routability with a high accu-
racy at this point. The problem of getting a good high-level
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Table 7: Errors of the polynomial regression for
CW_max using spreading score, AMC and #net.

design linear quadratic
error % | error %

testl 32 5% | 3.7 6%
test2 1.8 2% | 1.6 2%
test3 22 5% | 35 8%
test4 35 6% | 34 5%
testh 32 4% | 28 4%

routability estimator is still interesting and challenging. Any
improvement in this direction can potentially improve the
microarchitecture of the RTL design and reduce time and
effort in layout. One possibility is to consider a combination
of several metrics, together with some modeling of inter-
connects inside components, for more accurate routability
prediction.

2. After obtaining a reasonably accurate metric, another
challenge is how to use it to guide the optimization. One
possible approach is through iterative refinement by restruc-
turing a section of the HLS solution to gradually improve the
routability (under timing constraints). The challenge is to
ensure convergence (i.e. not to introduce new hotspots dur-
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Figure 4: Linear regression of average wire length on four high-level metrics.

ing refinement). We used such an iterative approach to co-
ordinate scheduling and resource binding [16] and achieved
encouraging results.

3. As we have demonstrated, proper organization of com-
piler transformations also has a considerable influence on
interconnect optimization. This is even more challenging
as the existing metrics will not apply in the absence of RTL
netlists. Some recent research efforts from the compiler com-
munity use statistical methods, like machine learning, for
automated compiler optimization [19,36]. We are in the
process of exploring this direction.
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